95% OF OUR RECENT GRADUATES HAVE SECURED EMPLOYMENT OR GONE ON TO FURTHER STUDY WITHIN SIX MONTHS OF GRADUATING (DLHE)
School of Chemical and Process Engineering

Globally renowned for our teaching and research, the School of Chemical and Process Engineering has an established reputation across the entire spectrum of chemical, energy, petroleum and nuclear engineering.

Chemical and process engineers help to manage natural resources, protect the environment, control health and safety procedures and recycle materials, while developing and managing the processes which make the vast range of products we use and take for granted in everyday life.

Chemical engineering is all about changing raw materials by altering the chemical, biochemical or physical state of a substance to create everything from face creams to fuels, metals to paper, plastics to synthetic fibres. These products are in every shop, office and home, and many of the companies that manufacture them are household names.

 OUR REPUTATION
We’re ranked top 10 in the UK for Chemical Engineering by the Complete University Guide 2018, and top 100 in the QS World University Rankings by Subject 2017. Our active research environment enables us to offer a range of exciting courses taught by experts who are leaders in their fields.

In recognition of our strong and continued commitment to gender equality, we have received a prestigious Athena SWAN Silver Award.

This is awarded by the Equality Challenge Unit, the national body that promotes equality in the higher education sector.

“ Our chemical engineering degree courses are internationally accredited by the Institution of Chemical Engineers (IChemE). Accreditation is vital if you want to become a chartered engineer after graduation.”

Dr Colin Poole, Senior Lecturer

OUR DEGREES:
- CHEMICAL ENGINEERING
- CHEMICAL AND ENERGY ENGINEERING
- CHEMICAL AND MATERIALS ENGINEERING
- CHEMICAL AND NUCLEAR ENGINEERING
- PETROLEUM ENGINEERING

To view all undergraduate degrees offered by the Faculty of Engineering visit: engineering.leeds.ac.uk
Learning and teaching

Our research feeds directly into our teaching and you will be taught by academics in an environment where knowledge is created. Through our research and the funding it attracts, we are able to invest in world-class facilities and staff who will enthuse and inspire you.

You will benefit from our integrated style of learning and teaching. The courses are modular and structured around lectures, tutorials, seminars, laboratory and practical work, as well as individual and group projects where you can gain hands-on experience of investigating and applying material from your lectures and tutorials in a real-world context.

INDUSTRY-RELEVANT COURSES
Our engagement with industry is one of the main reasons our graduates are so highly valued. The School has an active Industrial Advisory Committee, which helps ensure our courses are up to date with the modern practices and techniques that will enable you to succeed in industry upon graduation.

Our staff work with numerous companies on a variety of research and consultancy projects. We also organise industrial visits to sites such as Drax Power Station, Corus Steel, Sellafield, Ineos Chemicals and the Wytch Farm Oilfield, to name just a few. This means that you will have direct contact with industry and potential employers from an early stage in your course.

FLEXIBLE DEGREES
Our chemical engineering degrees share a common first two years. This means you have the freedom to switch courses up until the end of your second year.

You also have the option of extending your studies by taking an industrial placement year or studying abroad. Visit our ‘Careers and employability’ section on page 06 to find out more about these options.

INTEGRATED MASTERS (MEng, BEng)
All our courses are Integrated Masters (MEng, BEng) degrees, meaning they provide you with great breadth and depth of study.

If you study for four years, you can graduate with an MEng – the preferred engineering qualification, which fulfils the academic requirements en route to Chartered Engineer status. This course offers you the opportunity to work on a wider range of projects with a high level of industrial involvement. Should you wish to graduate early, you may decide at any point until the middle of the third year to graduate after three years with a BEng.

If you are sure from the start that you only want to study for three years, for example if you are an international student, it is also possible to apply for the BEng version of our courses. The BEng is identical to the first three years of the MEng course and has the same entry requirements.

FACILITIES
You will have access to specialist facilities, including laboratories equipped with the latest technology for environmental monitoring and pollution control, advanced energy systems such as fuel cells, X-ray diffractometers, scanning electron microscopes, chemical processing unit operations and petroleum reservoir and rock deformation facilities. You will also enjoy excellent teaching facilities, well-equipped lecture theatres and a study zone providing you with access to quiet group study areas and presentation rooms.

RANKED TOP 10 IN THE UK FOR CHEMICAL ENGINEERING BY THE COMPLETE UNIVERSITY GUIDE 2018
YEAR TWO
In your second year you’ll work on a project, which is a simplified version of an industrial process that you may meet in a real-life situation as a chemical engineer.

You’ll learn to balance a chemical process, which usually includes a recycle and a purge, and then calculate the energy balance across it. After designing a heat exchanger, you’ll calculate the pressure drops across and the piping to help you specify a pump and its motor. The project will give you experience of working in a team and help you to develop your communication and time-management skills.

Each design group will assume the role of a group of engineers within a company. You’ll be tasked with making a recommendation to the company as to whether the proposed chemical plant is economically viable.

The design project is an exciting and vital part of your degree; a pass in this module is important for admission to chartered membership of the Institution of Chemical Engineers (IChemE) after graduation.

YEAR THREE
As a third-year undergraduate, you’ll work in a group to design a chemical process plant or other industrial operations. Each project is supervised by a member of academic staff who you’ll meet with on a weekly basis. You’ll also attend a series of lectures and seminars dealing with relevant aspects of the planning, design and evaluation of the project, as well as ethical issues.

Recent research projects include:
- Extraction of silver from thiosulphate liquors
- Flocculation and aggregate structure of clay particulates
- Crystallisation of sodium sulphate
- Heat transfer in jacketed agitated reactors
- Applications of nanotechnology in enhanced oil recovery.

YEAR FOUR (MEng)
In your fourth year, you’ll carry out an individual research project under the guidance of an academic supervisor. The project will enable you to develop your research ability, a key skill needed in industry.

The topics of the projects provided vary greatly and are associated with current engineering problems in chemical and process engineering. Through the project, by the methods of experiment or computational simulation, you’ll gain an understanding in the area and develop the scientific understanding and engineering technology for the specific problem.
REWARDING CAREERS
Over 95% of our recent graduates have successfully secured employment or gone on to further study within six months of graduating (latest Destinations of Leavers from Higher Education (DLHE) survey).

Recent graduates have gone on to further study or have successfully secured positions in chemical and pharmaceutical companies, fossil fuel and renewable energy plants, mineral processing and metals operations. They also work in areas such as the utilities, consulting, environmental, health and safety, various government agencies, banking and finance.

According to a salary survey undertaken by the Institution of Chemical Engineers (IChemE) in 2014, the average starting salary for a chemical engineer in the UK was in the region of £29,500.

STRONG INDUSTRIAL LINKS
We have close links with some of the top graduate recruiters in the industry, including BP, Shell, Procter & Gamble, Unilever, Dow Chemicals, BRE and Arup. Our links with the chemical, energy and petroleum industries mean that our courses are industry oriented, with up-to-date material relevant to your future career. Our graduates are consequently highly sought after by employers. We organise additional seminars delivered by practising engineers and other professionals, meaning that you have direct contact with industry and potential employers from the start.

CAREERS SUPPORT
Throughout your time with us, our award-winning faculty Employability team is here to support, guide and advise you. In addition to specialist face-to-face meetings, you’ll benefit from:

- timetabled employability sessions
- ongoing support to find internships and placements
- presentations and workshops delivered by employers.

Our Employability team also organises an annual STEM Careers Fair, which will give you the opportunity to meet over 100 graduate recruiters to gain an insight into graduate jobs and to explore placement and internship opportunities.

INDUSTRIAL PLACEMENT YEAR
An industrial placement year is a great way to help you decide what kind of career you might like when you graduate. As well as giving you the opportunity to develop your own skills, you’ll gain a real insight into working life in a particular company or sector.

All our degrees allow you to undertake a placement year alongside your degree (either in the third year of the BEng or the third or fourth year of the MEng).

If you decide to undertake a placement year, this will extend your degree by 12 months. On successfully completing your placement year, you will be awarded the ‘industrial’ variant in your degree title to demonstrate your unique expertise to future employers.

STUDY ABROAD
You have the opportunity to apply to spend time abroad, usually as an extra academic year. The University has partnerships with more than 400 universities worldwide and popular destinations for our students include Europe, the USA, Canada, Australia, New Zealand, Singapore, Hong Kong, South Africa and Latin America.

Visit our website to find out more about these and other opportunities.

engineering.leeds.ac.uk/chemical/employability
I was delighted when I was successful in my application for an internship at Procter & Gamble. The role I applied for was supply network operations, something I was fairly unaware of before I began my placement. On a day-to-day basis, I manage projects that ensure P&G maintains impeccable supply of its products to UK retailers.

I have thoroughly enjoyed my placement because of the type of work I've been doing and the people I have been working with. Looking forward, I am hoping to be successful enough in my placement to be offered a full-time role with the company.”

LEWIS DZYGRYNUK
MEng, BEng Chemical Engineering (Industrial)
Industrial placement year at Procter & Gamble

Our students can currently be found on placement at companies including:

- Astra Zeneca
- Atkins
- BASF
- Mars
- Glaxosmithkline
- Invista
- L’Oréal
- Rolls-Royce
- P&G
- Sellafield Ltd
- Total
- Unilever
Chemical Engineering (MEng, BEng)

Chemical engineering is all about changing raw materials by altering the chemical, biochemical or physical state of a substance to create everything from face creams to fuels, metals to paper, plastics to synthetic fibres and drugs. This course will expose you to the fundamental science and mathematics underpinning process engineering concepts, alongside specialised modules to equip you for a career in the chemical and related process industries.

In years one and two you’ll cover topics such as mass and energy balances, thermodynamics, fluid mechanics, materials science and process modelling, as well as having plenty of opportunities to put that knowledge into practice in design and laboratory work.

In year three, you’ll build on this knowledge and study more specialised modules, covering a wide range of chemical engineering topics such as separation processes, reaction engineering, particle process engineering, process control and a major design project.

If you continue into year four for the MEng qualification, you’ll carry out an individual research project that investigates an industry-related topic in depth. Masters-level modules informed by research interests across the School will allow you to develop sophisticated knowledge of topics such as product design and development, modelling and simulation, advances in chemical engineering and advanced reaction engineering.

If you wish to study a specialism as part of your degree, we offer the following alternatives:

- Chemical and Energy Engineering (MEng, BEng)
- Chemical and Materials Engineering (MEng, BEng)
- Chemical and Nuclear Engineering (MEng, BEng)

In these courses, the third and fourth years cover degree-related subjects and projects, as well as core chemical engineering topics. The first two years of all four courses are common, so you can transfer to one of the others at the end of the second year if you wish.

These courses are accredited by the Institution of Chemical Engineers (IChemE) so that you can eventually apply for Chartered Engineer (CEng) status. The MEng version meets all the educational requirements for registration as a UK chartered engineer (CEng). Graduates of the BEng schemes can achieve this with additional study.

RANKED A TOP 100 UNIVERSITY FOR CHEMICAL ENGINEERING IN THE QS WORLD UNIVERSITY RANKINGS BY SUBJECT 2017

REWARDING CAREERS
Careers in the field of chemical and process engineering are wide ranging and employment prospects are excellent.

Recent graduates have secured positions including:
- Graduate Engineering Technician, ABB
- Nuclear Process Engineer, Amec
- Graduate Process Engineer, Babcock International
- Technical Support Engineer, Baker Hughes
- Engineering Graduate, BOC
- Drilling Engineer, BP
- Graduate Project Engineer, Centrica
- Chemical Engineer, ExxonMobil
- Energetics Scientist, Qinetiq
- Graduate Engineer, Reckitt Benckiser Products
- Drilling Engineer, Saudi Aramco
- Nuclear Process Engineer, Sellafield Ltd
- Oil and Gas Production Technologist, Shell
- Process Project Engineering, Unilever.
The energy needs of the world’s population keep growing, with most of it coming from fossil fuels that generate carbon dioxide, which ultimately results in climate change. Fossil fuels need to be burnt more efficiently and cleanly while, at the same time, renewable and sustainable sources of energy must be developed. This course will equip you with the skills needed to work in the chemical, energy and related industries. You’ll learn about fundamental science and mathematical concepts such as process modelling, thermodynamics and materials science, but you’ll also gain specialised knowledge and skills in topics like combustion processes and renewable energy technologies.

Every stage of the course gives you plenty of opportunity to apply your knowledge to project-based work, equipping you with the professional skills to succeed in your future career.

As with the core Chemical Engineering course, in years one and two you will be exposed to the fundamental science underpinning a wide range of engineering principles.

In year three, you’ll take part in a group design project concentrating on the design of a materials processing plant, supported by modules that will help develop your specialist knowledge. You’ll learn about structural materials and functional and nanomaterials, as well as core topics like separation processes.

If you continue into year four for the MEng qualification, you’ll take Masters-level modules informed by the research interests of staff in the School. These will give you sophisticated knowledge of topics like materials selection and failure analysis, industrial polymer engineering and product design. You’ll also conduct an individual research project on a materials-related topic.

Maryam Al Abdullatif
MEng Chemical and Energy Engineering

Throughout my three-year undergraduate degree, I have been exposed to the fundamental science and mathematics underpinning a wide range of process and energy engineering concepts thorough lectures, practicals and projects. Modules like renewable technologies, combustion theory, health, safety and environment developed my interest and provided me with strong insight into chemical engineering, renewable systems and environmental sustainability.

The projects and practicals I have done so far put into my perspective the relevance of future energy systems and its fundamentals to encounter problems in global warming and energy shortage.

Support is always available from teaching staff who are there to answer your questions. There are also employability seminars that run throughout the entire year, various societies and a wide range of volunteering opportunities available.

The skills I have gained a wide range of through my course will aid me in my future career. These include communications skills, time management, teamwork health and safety awareness and software skills, including Aspen Hysys and Matlab.
Developing new processes for producing specialist materials, such as plastics, lightweight metal alloys and nanomaterials, is an emerging trend in the chemical industry for a wide variety of industrial and consumer applications. Covering all these areas, this degree is designed to provide you with the knowledge and skills for a career in the chemical, materials and related industries.

You’ll gain a good grounding in the fundamental science and mathematical concepts that underpin chemical engineering, such as thermodynamics and the principles of process engineering. Specialised modules will also give you a thorough understanding of materials-related topics like structural materials and nanomaterials.

Each year of the course gives you the chance to take part in project work, equipping you with the range of professional skills you’ll need in your future career.

As with the core Chemical Engineering course, in years one and two you will be exposed to the fundamental science underpinning a wide range of engineering principles.

In year three, you’ll take part in a group design project concentrating on the design of a materials processing plant, supported by modules that will help develop your specialist knowledge. You’ll learn about structural materials and nanomaterials, as well as core topics like separation processes.

If you continue into year four for the MEng qualification, you’ll take Masters-level modules informed by the research interests of staff in the School. These will give you sophisticated knowledge of topics like materials selection and failure analysis, industrial polymer engineering and product design. You’ll also conduct an individual research project on a materials-related topic.

REWARDING CAREERS
Our graduates have successfully secured positions as process engineers, drilling engineers, engineering technicians and chemical engineers, among many other areas. They work in chemical and pharmaceutical companies, fossil fuel and renewable energy plants, mineral processing and metals recycling operations. They also work in areas such as the utilities, consulting, environmental, health and safety, other government agencies and banking and finance.

The course is extremely interesting and challenging. I enjoy the many forms of learning and teaching, which can range from using computer programs such as CAD and CrystalMaker to the group design projects and research work. I also enjoy how diverse the course is in terms of the people studying with me, giving me the chance to work on my intercultural skills as well as giving me potential travel destinations.

After I graduate I would like to do some research in the form of a PhD in fields such as biomaterials or nanotechnology. Eventually I hope to work in a management position for a big multicultural company!

KIMBERLEY MARIE PAVIER
MEng Chemical and Materials Engineering
Chemical and Nuclear Engineering
(MEng, BEng)

Nuclear power is a major component of the energy supply mix of many industrialised nations. Concerns over climate change have prompted a major resurgence of interest in nuclear power in the UK and elsewhere, meaning that the current shortage of skilled engineers capable of designing, building, operating and decommissioning such facilities is likely to grow in the future.

To help meet this demand, this course will give you specialist knowledge in various aspects of nuclear energy, so that after graduation you can expect to pursue an exciting and highly rewarding career in the industry. You’ll also gain a broad knowledge of key topics across the field of chemical engineering, such as thermodynamics and materials science, to complement your specialist skills.

As with the core Chemical Engineering course, in years one and two you will be exposed to the fundamental science underpinning a wide range of engineering principles.

Year three gives you the opportunity to build on this foundation. You’ll develop a more advanced knowledge of key chemical engineering topics such as reaction engineering and separation processes, alongside a specialised module in nuclear science and engineering, from the principles of fission to reactor decommissioning and the treatment of nuclear waste.

If you continue to year four for the MEng qualification, you’ll take Masters-level modules informed by the research interests of staff in the School. You’ll develop skills in designing new chemical products and manufacturing challenges and study reaction engineering in greater depth. At the same time, you’ll deepen your understanding of the context of nuclear engineering and the directions it may take in the future.

REWARDING CAREERS

Recent graduates have successfully secured positions in top UK nuclear companies, which include chemical and pharmaceutical companies, fossil fuel and renewable energy plants, mineral processing and metals operations. Many of our graduates have developed their careers by undertaking PhD projects. They also work in areas such as the utilities, consulting, environmental, health and safety, other government agencies and banking and finance.

Recent graduates have secured positions including:
• Graduate Nuclear Process Engineer, AMEC
• Graduate Nuclear Process Engineer, National Nuclear Laboratory
• Graduate Trainee, Nucleargraduates
• Graduate Nuclear Process Engineer, Sellafield Ltd
• Systems Engineer, Sellafield Ltd
• Graduate Process Engineer, Babcock International.

The laboratory work we’ve done across the three years has been the most enjoyable part of my studies. It’s nice to have hands-on experience related to the concepts taught in lectures, and carrying out experiments and writing up the lab reports really helps to consolidate what you’ve been taught.

Each year we’ve undertaken at least one chemical and nuclear-related project. This year, for the BEng design project, a small group of us designed part of a nuclear fuel reprocessing plant. It was a really challenging project as there were so many different things to consider but it was a chance to draw together all the basic concepts we had learned in the first two years of the course.”

CHARLOTTE RANSOM
MEng Chemical and Nuclear Engineering
These are typical modules/components studied and may change from time to time.

Modules

The first two years of our four chemical engineering degree courses are common, which means that is easy to change your programme choice if you wish. For full module descriptions please visit our website.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory modules:</td>
<td>Optional modules:</td>
</tr>
<tr>
<td>• Technical Skills and Applications</td>
<td>• Mathematical Techniques 2</td>
</tr>
<tr>
<td>• Introduction to Process Engineering</td>
<td>• Engineering Science 2</td>
</tr>
<tr>
<td>• Engineering Science 1</td>
<td>• Safety, Health and Environment</td>
</tr>
<tr>
<td>• Mathematical Techniques 1</td>
<td>• Process Systems and Applications</td>
</tr>
<tr>
<td>• Materials Science and Engineering</td>
<td>• Process Modelling and Thermodynamics</td>
</tr>
<tr>
<td>• Optional module</td>
<td>• Materials Synthesis and Characterisation</td>
</tr>
</tbody>
</table>

Year 3

Chemical Engineering
- Design Project (BEng)
- Process Engineering Operations
- Separation Processes
- Reaction Engineering
- Process Optimisation and Control

Chemical and Energy Engineering
- Design Project (BEng)
- Separation Processes
- Reaction Engineering
- Combustion Theory and Design
- Renewable Technologies

Chemical and Materials Engineering
- Design Project (BEng)
- Separation Processes
- Reaction Engineering
- Structural Materials
- Functional and Nano-Materials

Chemical and Nuclear Engineering
- Design Project (BEng)
- Separation Processes
- Reaction Engineering
- Nuclear Operations
- Nuclear Fundamentals

Year 4 (MEng)

Chemical Engineering
- Research Project (MEng)
- Chemical Products Design and Development
- Multi-Scale Modelling and Simulation
- Advanced Reaction Engineering
- Advances in Chemical Engineering

Chemical and Energy Engineering
- Research Project
- Chemical Product Design and Development
- Advanced Engines and Turbines
- Advanced Reaction Engineering
- Fuel Processing
- Advanced Renewable Technologies

Chemical and Materials Engineering
- Research Project (MEng)
- Chemical Products Design and Development
- Advanced Reaction Engineering
- Materials Selection and Failure Analysis
- Nanomaterials
- Extractive Metallurgy

Chemical and Nuclear Engineering
- Research Project (MEng)
- Chemical Products Design and Development
- Advanced Reaction Engineering
- Nuclear Engineering and the Nuclear Industry
- Nuclear Futures
Petroleum Engineering
(MEng, BEng)

Global economic growth creates rising demand for oil and gas. Petroleum engineers play a vital role in the industry by finding, extracting and processing oil and gas, but there is currently a major shortage of engineers qualified in this area.

Designed in collaboration with a number of companies, this degree will equip you to meet this need. You’ll study the basic mathematical, scientific and geological concepts that underpin petroleum engineering alongside specialised modules on topics like geophysics, drilling technology and unconventional oil and gas reservoirs.

The course is taught by the School of Chemical and Process Engineering, and the School of Earth and Environment, meaning you’ll be taught by experts in a variety of fields with extensive industrial experience.

The first two years of the course will give you a good grounding in the fundamental science and mathematics behind key engineering and geological concepts. You’ll learn the basics of geophysics, the mechanisms that create sedimentary basins and reservoir simulation techniques, as well as core topics like process modelling and thermodynamics.

Year three gives you the chance to build on this knowledge with a set of specialised modules on topics such as drilling and production technology and interpreting seismic activity. You’ll also explore wider strategic issues in the energy industries, such as climate change, environmental policy and the debate around shale gas extraction. The major team project will give you the chance to design an oil or gas reservoir or a production or processing facility.

If you continue to year four for the MEng qualification, you’ll study Masters-level modules informed by the research of staff in both Schools. The topics you’ll study include unconventional oil and gas reservoirs, refinery chemistry and advanced drilling and production technology. You’ll also apply what you’ve learned to an individual research project on a topic relevant to the petroleum industry.

REWARDING CAREERS
Demand for hydrocarbon production is growing as the global economy grows, and the oil and gas sector is truly international. As a result, you can look forward to a variety of exciting career prospects.

Typical areas include petroleum geology, oil and gas exploration, reservoir modelling, drilling and production, refinery operations, product marketing, operational management, equipment manufacture and supply, consultancy and regulatory authorities.

Recent graduate destinations include:
• Production Engineer, Saudi Aramco
• Field Engineer, Schlumberger
• Graduate Oil and Gas Production Technologist, Shell.

These are typical modules/components studied and may change from time to time.
Entry requirements and how to apply

<table>
<thead>
<tr>
<th>Degree title</th>
<th>UCAS code</th>
<th>Duration (years)</th>
<th>A-level</th>
<th>BTEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEng, BEng Chemical Engineering</td>
<td>H800</td>
<td>3/4</td>
<td>A*AA, including Mathematics and either Physics or Chemistry. Excludes General Studies or Critical Thinking.</td>
<td>DDD with distinctions in relevant mathematics and chemistry or physics units. Some mathematics and chemistry or physics units may be optional on your BTEC but are required by the Faculty. Please contact us for further information.</td>
</tr>
<tr>
<td>BEng Chemical Engineering</td>
<td>H805</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEng, BEng Chemical and Energy Engineering</td>
<td>H801</td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEng Chemical and Energy Engineering</td>
<td>H806</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEng, BEng Chemical and Materials Engineering</td>
<td>HJ85</td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEng Chemical and Materials Engineering</td>
<td>HJ90</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEng, BEng Chemical and Nuclear Engineering</td>
<td>H891</td>
<td>3/4</td>
<td>AAA, including Mathematics and Physics or Chemistry. Excludes General Studies or Critical Thinking.</td>
<td>D*DD with distinctions in relevant mathematics and chemistry or physics units. Some mathematics and chemistry or physics units may be optional on your BTEC but are required by the Faculty. Please contact us for further information.</td>
</tr>
<tr>
<td>BEng Chemical and Nuclear Engineering</td>
<td>H896</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEng, BEng Petroleum Engineering</td>
<td>H851</td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEng Petroleum Engineering</td>
<td>H856</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Where an A-level science subject is taken, we require a pass in the practical science element, alongside the achievement of the A-level at the stated grade.

Extended Project Qualification: while we recognise the value, effort and enthusiasm applicants make in the Extended Project, we do not currently include this as part of our offer-making. We do however encourage you to provide further information on your project in your personal statement and, if invited, at interview.

EQUIVALENT QUALIFICATIONS
We welcome students with a wide range of qualifications and these are listed on our website.
engineering.leeds.ac.uk/chemical/ug-equivalents

ENGLISH LANGUAGE REQUIREMENTS
GCSE English Language grade C (or above) or an equivalent recognised English language qualification, eg IELTS 6.0 overall with no less than 5.5 in each section.

ACCESS TO LEEDS
The University of Leeds has a policy of welcoming applicants from non-traditional academic backgrounds. If you do not meet our entry criteria above, you may be eligible via the Access to Leeds scheme.
www.leeds.ac.uk/a2l

FOUNDATION COURSES
If you do not have the formal qualifications for immediate entry to one of our degrees, you may be able to progress through a foundation year.

The University offers a one-year BSc Studies in Science designed to prepare students without a science background at A-level for study on one of our degrees in engineering.
We also offer an interdisciplinary Science Foundation Year for applicants who meet specific widening participation criteria.

www.llc.leeds.ac.uk

INTERNATIONAL FOUNDATION YEAR IN ENGINEERING
Our International Foundation Year (IFY) is intended for international students who do not yet have the formal qualifications required for entry to level 1 of our degree courses.

internationalfoundationyear.leeds.ac.uk

LANGUAGE CENTRE
Our Language Centre provides the Academic English for Undergraduate Studies pre-sessional course, which is designed to help international students develop the necessary language and academic study skills for undergraduate study.

www.leeds.ac.uk/languages

HOW TO APPLY
All undergraduate applications should be made through the Universities and Colleges Admissions Service (UCAS). Full instructions on how to apply are available at

www.ucas.com

OFFER PROCESS
Suitable applicants will be invited to an applicant day, for which we strongly encourage attendance, as this gives you the opportunity to meet our students, academic and admissions staff, and find out more about your course. You’ll take part in a practical engineering activity, followed by a School and campus tour. The tour of the School’s facilities includes interactive demonstrations of student activities.

A discussion with an academic will normally form part of this process. This will give you the chance to talk about your application in more detail, check that it’s the right course for you and your career plans, have your questions answered and find out more about studying at Leeds.

SCHOLARSHIPS
We offer a number of scholarships within the School. Please visit our website for further details.

engineering.leeds.ac.uk/scholarships

CONTACT US
If you require any further information prior to making a formal application, please contact our Undergraduate Admissions team.

School of Chemical and Process Engineering
University of Leeds
Leeds LS2 9JT, UK
tel: +44 (0)113 343 6542
email: ugchemical@leeds.ac.uk

FIND US ONLINE
To find out more about the University and the School of Chemical and Process Engineering visit:

engineering.leeds.ac.uk/chemical

facebook: facultyofengineeringleeds
@LeedsUniEng
@engineeringleeds
youtube: engineeringleeds
leedsuniengineering