CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CHEMISTRY AT LEEDS</td>
</tr>
<tr>
<td>4</td>
<td>LEARNING AND TEACHING</td>
</tr>
<tr>
<td>6</td>
<td>CAREERS AND EMPLOYABILITY</td>
</tr>
<tr>
<td>8</td>
<td>OUR COURSES</td>
</tr>
<tr>
<td>12</td>
<td>MODULES</td>
</tr>
<tr>
<td>14</td>
<td>ENTRY REQUIREMENTS AND HOW TO APPLY</td>
</tr>
</tbody>
</table>

The University of Leeds achieved a Gold rating in the Teaching Excellence Framework (TEF) 2017

IMPORTANT INFORMATION

Information provided by the University, such as in presentations, University brochures and on the University website, is accurate at the time of first disclosure. However, courses, University services and content of publications remain subject to change. Changes may be necessary to comply with the requirements of accrediting bodies or to keep courses contemporary through updating practices or areas of study. Circumstances may arise outside the reasonable control of the University leading to required changes. Such circumstances include industrial action, unexpected student numbers, significant staff illness (where a course is reliant upon a person’s expertise), unexpected lack of funding, severe weather, fire, civil disorder, political unrest, government restrictions and serious concern with regard to the transmission of serious illness making a course unsafe to deliver. After a student has taken up a place with the University, the University will look to give early notification of any changes and try to minimise their impact, offering suitable alternative arrangements or forms of compensation where it believes there is a fair case to do so. Offers of a place to study at the University will provide up-to-date information on courses. The latest key information on courses, entry requirements and fees can be found at courses.leeds.ac.uk. Please check this website before making any decisions.
Throughout your course, you will study the breadth of chemistry to understand how quantum mechanics controls reactions on the smallest scale. You’ll use this knowledge to design and control the synthesis of molecules, and to explore chemical processes in the natural world.

Chemistry is applicable to a wide range of businesses and industries, from the design of new medicines and biological probes, to novel ways to generate energy and improve materials.

By studying chemistry, you’ll gain a deeper understanding of how the world around us works and learn vital skills that will help you secure the job you want when you graduate.

“The recognition of our commitment to student education by receiving the Teaching Excellence Framework Gold Award is just one reflection of how, by working in partnership, students and staff create a really invigorating and vibrant atmosphere within the School.”

DR RICHARD ANSELL
DIRECTOR OF STUDENT EDUCATION

In recognition of our strong and continued commitment to gender equality, we have received a prestigious Athena SWAN Bronze Award.

This is awarded by the Equality Challenge Unit, the national body that promotes equality in the higher education sector.
Building on more than 70 years of history, the School of Chemistry at the University of Leeds is a world-renowned centre for learning and research.

We’re ranked in the top 150 universities in the world for Chemistry and Natural Sciences (QS World University Rankings by Subject 2018). Additionally, 95% of our research is rated ‘world-leading’ or ‘internationally excellent’ (latest Research Excellence Framework, 2014).

And we’re especially proud of our student satisfaction rating of 92% (National Student Survey 2017). All this means we have good reason to be proud of our reputation at every level: the teaching we do, the research we produce and the people who love to study here.

DISCOVERY MODULES

As well as the compulsory and optional modules that make up your course, you’ll have the chance to take discovery modules. These allow you to pursue interests outside of chemistry during your course.

RESEARCH-BASED DEGREES

Leeds is a member of the Russell Group of research-intensive universities, making it a natural home for anyone who wants to advance scientific knowledge. Our chemistry degrees are shaped by our research activity and you’ll be given the opportunity to contribute to it, using state-of-the-art facilities to make your own discoveries.

MChem, BSc courses culminate in an exciting research project that sees you apply the training you’ve received to make your own contribution to chemistry. Your project will open your eyes to the investigative nature of chemistry, while giving you the opportunity to follow your own interests. You’ll work collaboratively with your supervisors throughout the project, who’ll be experts in your particular research area.

FLEXIBLE COURSES

We offer both BSc and MChem, BSc undergraduate degree programmes. You don’t have to decide which one you want to follow straight away: you can switch between these courses until the end of your second year.

An MChem, BSc is an Integrated Masters course. As well as undertaking a wider range of project work, you’ll study modules at a more advanced level and learn more about why chemistry is important in industrial, economic, environmental and social contexts.

All our courses include the option to study abroad, or alternatively undertake a paid industrial placement for a year.

LEADING FACILITIES

We continually invest in the School of Chemistry’s teaching and laboratory facilities, ensuring students are using the most up-to-date equipment for synthetic, physical and analytical chemistry.

These include a suite of five NMR machines, a cutting-edge CCD-based X-ray diffractometer, a Nova NanoSEM450 scanning electron microscope, femtosecond laser systems, a category 2 microbiological suite and an automated robotic synthesis and purification laboratory.
YEAR 1
Your first year will be spent learning about modern chemistry, and the fundamentals of its organic, inorganic and physical branches. You’ll also learn the mathematical concepts and practical skills you will need in the lab.

YEAR 2
In your second year, you’ll move on to more advanced topics such as organometallic and f-block chemistry, structure and spectroscopy and organic synthesis. You’ll undertake assessed laboratory work, while also having the option to study things like the commercial applications of chemistry and its role in society.

YEAR 3
Your third year will be divided between advanced compulsory modules in core topics, and a wide array of optional modules including atmospheric chemistry, chromatography, self-assembling materials and supramolecular chemistry. You’ll also participate in advanced lab work. You have the opportunity to study abroad or undertake an industrial placement in your third year.

YEAR 4 (MCHEM)
In your fourth year, half of your time will be spent on a laboratory-based research project. This is your chance to pursue a topic in chemistry that fascinates you, where you’ll collect and evaluate data in the lab before presenting your findings to your peers. The remainder of your time will be spent on advanced study to prepare you for postgraduate research in industry and academia.

A few examples of past fourth-year research topics include:
- Molecularly imprinted sensors and catalysts
- Energy transport in photosynthesis
- Third generation drug discovery: human-on-a-chip
- Chemistry of cosmic dust
- Discovery of drugs and biomarkers for cancer therapy
- Re-engineering bacterial toxins for drug delivery
- Development of novel quantum dot-aptamer biosensors.
Experienced and talented chemists are in high demand. Over 94% of our recent graduates have secured employment or gone on to further study within six months of graduating (DLHE, 2015/16).

The University of Leeds links with industry mean you will have opportunities to spend time in a workplace setting, as well as learning about the commercial applications of modern chemistry on your course. We’re also one of the top ten UK universities targeted by employers (The Graduate Market in 2018, High Flyers Research).

REWARDING CAREERS

Many of our recent graduates have gone on to work as chemists in some of the largest and most innovative companies in the world, including:

- AstraZeneca
- AzkoNobel
- Lhasa Ltd
- Covance
- Merck Sharp & Dohme
- Goldman Sachs International
- IBM
- Sellafield
- NHS
- Unilever
- Cancer Research UK.

Others have secured PhD positions in order to make some of the big discoveries of the future. The career options available to you will be varied and could take you away from the labs to a rewarding career in government agencies, NGOs, healthcare or finance.

CAREER SUPPORT

Our dedicated Faculty Employability Team will support, guide and advise you to ensure you graduate with a clear plan of what you want to do next. In addition to specialist face-to-face meetings, you’ll benefit from:

- timetabled employability sessions
- the opportunity for paid summer internships in local SMEs, charities, University of Leeds departments and multi-national organisations.
- presentations and workshops delivered by employers

Our Employability Team organises an annual Careers Fair which will give you the opportunity to meet over 100 recruiters to gain an insight into graduate jobs and explore work experience and internship opportunities.

Additionally, we offer the optional Future Career Planning for Chemists module, which is designed to give you the time and resources to plan your next steps in life.

Using a mixture of lectures, on campus and at employer workplaces, alongside experiential learning, we explore options available to boost your skills and help you gain a competitive advantage when it comes to looking for internships, placements and graduate jobs.

STUDENT ENTERPRISE

Some students want to start their own business when they graduate. The University’s innovative SPARK initiative can help you with business start-up support, advice and funding to develop your idea into a viable business.

You also have the opportunity to apply for the Year in Enterprise programme, which gives you the chance to take a year out to develop your business – you’ll receive a £5,000 bursary and have access to advice, mentoring and professional networks.

WE ARE PROUD WINNERS OF THE MOST IMPROVED COMMITMENT TO EMPLOYABILITY AWARD (NUE AWARDS 2018).

The Faculty of Mathematics and Physical Sciences Employability team won the Most Improved Commitment to Employability Award at the National Undergraduate Employability Awards Ceremony in 2018. This is a reflection of the unrivalled support given to our students at Leeds, and the widening pool of work experience opportunities available to students in today’s competitive market.
The University of Leeds has a fantastic Study Abroad programme, which was one of the many reasons why I chose to come to Leeds. After a very simple application process, I am very fortunate to be studying abroad at the University of Calgary next academic year!

CLAUDIA THOMPSON, CHEMISTRY MCHEM, BSC STUDY ABROAD YEAR IN CANADA
As a chemistry student at Leeds, you will discover how chemistry shapes the world around us. You can explore topics ranging from quantum mechanics to planetary atmospheres, from making organic chemicals to producing medicinal drugs, and from bonding in metals to the structures of synthetic and biological materials.

Our chemistry courses aim to help you fulfil your potential, so our degrees take a wide-ranging view of all aspects of chemistry and prepare you for a career in any area of the subject while allowing you to develop as a researcher in a specialism of your choice.

The course modules are inspired by our research strengths in areas such as chemical biology, atmospheric chemistry, materials science and colour science. You will have the opportunity to attend career development workshops, which will help you complete future application forms and prepare for interviews.

In your first and second years you will study the fundamentals of physical, organic and inorganic chemistry and explore how these concepts integrate together. Optional modules allow you to build transferable skills: for example, Chemistry: Idea to Market offers an insight into industrial new product development. You will also have the opportunity to broaden your knowledge and pursue your interests in other subjects from across the University through discovery modules.

As you progress through the course, you will be able to study more advanced topics relating to the research strengths of the School in greater detail. In the final year of the MChem, BSc degree, you will undertake a major research project, working with experienced scientists to advance our knowledge of chemistry.

This degree is accredited by the Royal Society of Chemistry (RSC). Masters accreditation provides access to qualified membership of RSC and fully satisfies the academic requirements for the RSC award of Chartered Chemist (CChem).

“The course is definitely challenging, but I love it! I feel that I am becoming a better chemist and am learning new skills which I am certain will help me now and in the future. I wanted a degree that was interesting and stimulating, and that is definitely what I got.”

ABBIE LEGGOTT,
CHEMISTRY MCHEM, BSC
MEDICINAL CHEMISTRY

Medicinal Chemistry BSc:
UCAS code F150 / Entry grades AAB / Duration 3 years

Medicinal Chemistry MChem, BSc:
UCAS code F153 / Entry grades AAB / Duration 4 years

Medicinal Chemistry with a Year in Industry MChem, BSc:
UCAS code F154 / Entry grades AAB / Duration 4 years

Medicinal Chemistry with Study Abroad MChem, BSc:
UCAS code F156 / Entry grades AAB / Duration 4 years

Without medicinal chemists, life as we know it would be impossible. Modern medicines give us pain relief, cure bacterial infections and fight viruses and cancer – and there’s always more work to be done.

Without the arsenal of drugs at their disposal, doctors would be unable to cure many common diseases. It is the ability of medicinal chemists to have a positive impact on the health and wellbeing of millions of people worldwide that motivates many of our students on this course.

Through studying medicinal chemistry at Leeds, you will be able to gain a broad understanding of chemistry and detailed knowledge of how drugs interact in the body. We also provide opportunities for you to develop the transferable skills that employers seek.

The course structure shares many elements with our Chemistry course, but you will focus your study more on the organic elements of chemistry with an enhanced level of teaching on drug synthesis, pharmacology and how drugs work in biological systems.

The first year of the course develops your understanding of the fundamentals of chemistry. From the second year onwards, you will focus more on organic chemistry, with advanced teaching on drug synthesis and pharmacology. In your third year, you’ll analyse strategies used in the development of drugs in key therapeutic areas, such as the treatment of cancer and bacterial infection.

In the final year of our MChem, BSc course, you will undertake a major research project. You’ll have the chance to work with interdisciplinary groups at Leeds, which contain medics, biologists and chemists who work collaboratively to discover new therapeutic strategies.

This degree is accredited by the Royal Society of Chemistry (RSC). Masters accreditation provides access to qualified membership of RSC and fully satisfies the academic requirements for the RSC award of Chartered Chemist (CChem).

“At A-level I studied chemistry, maths and psychology and I was struggling to decide which of the three to take to degree level. After much deliberation, I realised that a chemistry degree had the capacity to encompass all three aspects, from quantum mechanics to drug discovery for mental health.”

CHARLIE STEVENSON,
MEDICINAL CHEMISTRY MCHEM, BSC
CHEMISTRY AND MATHEMATICS

Chemistry and Mathematics BSc:
UCAS code FG11 / Entry grades AAB / Duration 3 years

Chemistry and Mathematics MChem, BSc:
UCAS code FIGC / Entry grades AAA / Duration 4 years

Both physical and theoretical chemistry can be greatly enhanced with an advanced understanding of mathematics. Soft matter, chemical kinetics theory, chemoinformatics, atmospheric modelling and process chemistry are just some of the topics relevant to both sciences.

Using the tools of advanced mathematics to understand the diversity and complexity of the chemical world is what really drives students on our chemistry and mathematics joint honours degrees.

On this course you’ll study alongside single honours chemists and mathematicians who are learning the same concepts and reaching the same depth of knowledge as you.

You will combine your mathematical skills with the study of chemistry to understand how and why molecules react and the methods that are employed to study them. You will also have the option to specialise in organic, inorganic or physical chemistry.

As a core part of your chemistry modules, you’ll have extensive practical sessions in the laboratory, allowing you to perform experiments that reinforce the material taught to you in the lectures. In addition, small tutorial groups are used to support the teaching so you get regular feedback from the academic staff helping you solve any problems that you might have with a particular topic.

In studying mathematics, you will develop your skills in core subject areas such as linear algebra and calculus. A wide range of optional modules available from your second year onwards will allow you to pursue areas ranging from quantum mechanics to probability theory, fluid dynamics, computational modelling, statistical analysis and combinatorics.

After your second year, you’ll be able to choose additional mathematics or chemistry options, or even take a third elective subject available from a wide range.

Taking certain options in this course can result in accreditations from the Royal Statistical Society and the Royal Society of Chemistry, and others can receive exemptions from the Institute of Actuaries.

“The labs section of the course is good, particularly the physical chemistry labs where you are handling large amounts of data and presenting it scientifically - this gives the opportunity to apply a lot of skills learned through the maths side of the course.”

NICOLA PEREE
CHEMISTRY AND MATHEMATICS BSC
“I am currently undertaking my industrial placement with GlaxoSmithKline (GSK), one of the largest pharmaceutical companies worldwide. They specialise in the research, development and supply of vaccines, pharmaceuticals and consumer goods.

The most satisfying aspect of my role is seeing a route progress from idea to application. It is truly rewarding to overcome the challenges in designing and improving a synthesis, as well as further planning for the future of the project.

I applied for the industrial placement scheme at GSK as it is a fantastic opportunity to learn from and work alongside first-rate scientists, utilising knowledge from university to tackle challenges within healthcare.”

MIA CALLENS
MEDICINAL CHEMISTRY MCHEM, BSC
INDUSTRIAL PLACEMENT YEAR AT GLAXOSMITHKLINE
MODULES

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Chemistry</th>
<th>Medicinal Chemistry</th>
<th>Chemistry and Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Modern Chemistry</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Fundamentals of Physical Chemistry</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Fundamentals of Inorganic Chemistry</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Fundamentals of Organic Chemistry</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Mathematical and Physical Concepts for Chemists</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Practical Skills in Chemistry</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Studying in a Digital Age (Chemistry)</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Chemistry and Medicinal Chemistry students will also study 30 credits of optional or discovery modules. Chemistry and Mathematics students will study 60 credits of compulsory Mathematics modules. Please refer to the course page on the website for more details.

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Chemistry</th>
<th>Medicinal Chemistry</th>
<th>Chemistry and Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure and Synthesis of Materials</td>
<td>C</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Introduction to Drug Design</td>
<td>-</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Introduction to Organic Synthesis</td>
<td>C</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Chemical Kinetics and Thermodynamics</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Structure and Spectroscopy</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Organic Structure and Mechanism</td>
<td>C</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Quantum Mechanics and Spectroscopy</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Organometallic and f-block Chemistry</td>
<td>C</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Equilibrium and Analysis: from Ions to Proteins</td>
<td>C</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Laboratory Work</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Science and Society: The Critical Interface</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Chemistry: Idea to Market</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Advances in Colour and Polymer Sciences</td>
<td>O</td>
<td>O</td>
<td>-</td>
</tr>
</tbody>
</table>

Chemistry and Mathematics students will also study 40 credits of compulsory Mathematics modules, and at least 10 credits from a wide selection of optional Mathematics modules. Please refer to the course page on the website for more details.

c = compulsory, o = optional, - = not available

These are typical modules/components studied and may change from time to time.
Chemistry and Mathematics students will also study at least 40 credits from a wide selection of optional Mathematics modules. Please refer to the course page on the website for more details.

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Chemistry</th>
<th>Medicinal Chemistry</th>
<th>Chemistry and Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Organometallics and Catalysis</td>
<td>C</td>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>Chemical Bonding and Reactivity</td>
<td>C</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Organic Synthesis</td>
<td>C</td>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>Chemistry at the Molecular Level</td>
<td>C</td>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>Advanced Lab Work for MChem</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>The Medicinal Chemistry of Drug Development</td>
<td>-</td>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>Laboratory Work</td>
<td>-</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Atmospheric Chemistry</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chromatography and Analytical Separation</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Properties and Applications of Materials</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reactivity in Organic Chemistry - Principles and Applications</td>
<td>0</td>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>Soft Matter: Self-Assembling and Polymeric Materials</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fundamental Supramolecular Chemistry</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Big Data, Big Science</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chemistry: Making an Impact</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethical Issues in Chemistry</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chemistry into Schools</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Chemistry and Mathematics students will also study at least 40 credits from a wide selection of optional Mathematics modules. Please refer to the course page on the website for more details.

<table>
<thead>
<tr>
<th>Year 4 (MChem)</th>
<th>Chemistry</th>
<th>Medicinal Chemistry</th>
<th>Chemistry and Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory-based Project Work</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Advanced Topics in Chemistry</td>
<td>C</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Advanced Topics in Medicinal Chemistry</td>
<td>-</td>
<td>C</td>
<td>-</td>
</tr>
</tbody>
</table>

Chemistry and Mathematics students will also study 40 credits from a wide selection of optional Mathematics modules. Please refer to the course page on the website for more details.

These are typical modules/components studied and may change from time to time.
ENTRY REQUIREMENTS AND HOW TO APPLY

<table>
<thead>
<tr>
<th>Degree</th>
<th>UCAS code</th>
<th>Duration (years)</th>
<th>A-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry BSc</td>
<td>F100</td>
<td>3</td>
<td>AAB, including Chemistry.</td>
</tr>
<tr>
<td>Chemistry MChem, BSc</td>
<td>F103</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Chemistry with a Year in Industry MChem, BSc</td>
<td>F105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry with Study Abroad MChem, BSc</td>
<td>F107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicinal Chemistry BSc</td>
<td>F150</td>
<td>3</td>
<td>AAB, including Chemistry.</td>
</tr>
<tr>
<td>Medicinal Chemistry MChem, BSc</td>
<td>F153</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Medicinal Chemistry with a Year in Industry MChem, BSc</td>
<td>F154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicinal Chemistry with Study Abroad MChem, BSc</td>
<td>F156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry and Mathematics BSc</td>
<td>FG11</td>
<td>3</td>
<td>AAB, including both Chemistry and Mathematics with an A in Mathematics.</td>
</tr>
<tr>
<td>Chemistry and Mathematics MChem, BSc</td>
<td>F1GC</td>
<td>4</td>
<td>AAA, including both Chemistry and Mathematics.</td>
</tr>
</tbody>
</table>

A-level General Studies and Critical Thinking are excluded. Where an A-level science subject is taken, we require a pass in the practical science element, alongside the achievement of the A-level at the stated grade.

GCSE Mathematics Grade B/6 is also required if it is not offered at a higher level.

We also accept a variety of alternative qualifications. Please check our website for details.

ENGLISH LANGUAGE REQUIREMENTS

GCSE English Language grade C (or above) or an equivalent recognised English language qualification, eg IELTS 6.0 overall with no less than 5.5 in each element.
ACCESS TO LEEDS

We’re committed to identifying the best possible applicants, regardless of personal circumstances or background. If you do not meet our entry criteria, you may be eligible through the Access to Leeds scheme.

leeds.ac.uk/a2l

HOW TO APPLY

All undergraduate applications should be made through the Universities and Colleges Admissions Service (UCAS).

ucas.com

OFFER PROCESS

Suitable applicants will be invited to an applicant day, which gives you the opportunity to meet our academic staff and students, enjoy a tour of our facilities, view student accommodation and find out more about your course.

The day will also include an interview with one of our academics. This will give you the chance to discuss your application in more detail, check that it’s the right course for you and your career plans, have your questions answered and find out more about studying at Leeds.

SCHOLARSHIPS

The University of Leeds has a long-standing history of helping students to manage their finances while at University, with a comprehensive range of bursaries and scholarships available.

chem.leeds.ac.uk/undergraduate/scholarships

CONTACT US

If you require any more information about our courses, modules or any other aspect of studying chemistry at Leeds, contact our Undergraduate Admissions team.

School of Chemistry
University of Leeds
Leeds LS2 9JT, UK

Tel: +44 (0)113 343 6440
Email: admissions@chem.leeds.ac.uk

FIND US ONLINE

chem.leeds.ac.uk
@chemleedsuni