Globally renowned for our teaching and research, the School of Chemical and Process Engineering has an established reputation across the entire spectrum of chemical, energy, petroleum and nuclear engineering.

Chemical and process engineers help to manage natural resources, protect the environment, control health and safety procedures and recycle materials, while developing and managing the processes which make the vast range of products we use and take for granted in everyday life.

Chemical engineering is all about changing raw materials by altering the chemical, biochemical or physical state of a substance to create everything from face creams to fuels, metals to paper, plastics to synthetic fibres. These products are in every shop, office and home, and many of the companies that manufacture them are household names.

OUR REPUTATION
We’re ranked top 10 in the UK for Chemical Engineering by the Complete University Guide 2018, and top 100 in the QS World University Rankings by Subject 2018. Our active research environment enables us to offer a range of exciting courses taught by experts who are leaders in their fields.

In recognition of our strong and continued commitment to gender equality, we have received a prestigious Athena SWAN Silver Award.

This is awarded by the Equality Challenge Unit, the national body that promotes equality in the higher education sector.

“ Our chemical engineering degree courses are internationally accredited by the Institution of Chemical Engineers (IChemE). Accreditation is vital if you want to become a chartered engineer after graduation.”

Dr Darron Dixon-Hardy, Admissions Tutor

OUR DEGREES:
CHEMICAL ENGINEERING
CHEMICAL AND ENERGY ENGINEERING
CHEMICAL AND MATERIALS ENGINEERING
CHEMICAL AND NUCLEAR ENGINEERING
PETROLEUM ENGINEERING

To view all undergraduate degrees offered by the Faculty of Engineering visit: engineering.leeds.ac.uk
Our research feeds directly into our teaching and you will be taught by academics in an environment where knowledge is created. Through our research and the funding it attracts, we are able to invest in world-class facilities and staff who will enthuse and inspire you.

You will benefit from our integrated style of learning and teaching. The courses are modular and structured around lectures, tutorials, seminars, laboratory and practical work, as well as individual and group projects where you can gain hands-on experience of investigating and applying material from your lectures and tutorials in a real-world context.

INDUSTRY-RELEVANT COURSES
Our engagement with industry is one of the main reasons our graduates are so highly valued. The School has an active Industrial Advisory Committee, which helps ensure our courses are up to date with the modern practices and techniques that will enable you to succeed in industry upon graduation.

Our staff work with numerous companies on a variety of research and consultancy projects. We also organise industrial visits to sites such as Drax Power Station, Corus Steel, Sellafield, Ineos Chemicals and the Wytch Farm Oilfield, to name just a few. This means that you will have direct contact with industry and potential employers from an early stage in your course.

FLEXIBLE DEGREES
Our chemical engineering degrees share a common first two years. This means you have the freedom to switch courses up until the end of your second year.

You also have the option of extending your studies by taking an industrial placement year or studying abroad. Visit the ‘Careers and employability’ section on page 6 to find out more about these options.

INTEGRATED MASTERS (MEng, BEng)
All our courses are Integrated Masters (MEng, BEng) degrees, meaning they provide you with great breadth and depth of study.

If you study for four years, you can graduate with an MEng – the preferred engineering qualification, which fulfils the academic requirements en route to Chartered Engineer status. This course offers you the opportunity to work on a wider range of projects with a high level of industrial involvement. Should you wish to graduate early, you may decide at any point until the middle of the third year to graduate after three years with a BEng.

If you are sure from the start that you only want to study for three years, for example if you are an international student, it is also possible to apply for the BEng version of our courses. The BEng is identical to the first three years of the MEng course and has the same entry requirements.

FACILITIES
You will have access to specialist facilities, including laboratories equipped with the latest technology for environmental monitoring and pollution control, advanced energy systems such as fuel cells, X-ray diffractometers, scanning electron microscopes, chemical processing unit operations and petroleum reservoir and rock deformation facilities. You will also enjoy excellent teaching facilities, well-equipped lecture theatres and a study zone providing you with access to quiet group study areas and presentation rooms.

HANDS-ON LEARNING
The individual and group project work you’ll carry out throughout your course will take you one step closer to becoming a confident and self-motivated graduate.

As well as focusing on technical and problem-solving abilities, project work also allows you to develop professional skills to facilitate successful participation in design and research activities, including teamwork and effective communication skills.

YEAR ONE
You’ll participate in an introductory group project, which will form part of your coursework. This project is concerned with the design of processing plants – a major aspect of all process-based engineering – and you’ll gain your first experience of the design process.

RANKED TOP 10 IN THE UK FOR CHEMICAL ENGINEERING
BY THE COMPLETE UNIVERSITY GUIDE 2018
YEAR TWO
In your second year you’ll work on a project, which is a simplified version of an industrial process that you may meet in a real-life situation as a chemical engineer.

You’ll learn to balance a chemical process, which usually includes a recycle and a purge, and then calculate the energy balance across it. After designing a heat exchanger, you’ll calculate the pressure drops across and the piping to help you specify a pump and its motor. The project will give you experience of working in a team and help you to develop your communication and time-management skills.

YEAR THREE
As a third-year undergraduate, you’ll work in a group to design a chemical process plant or other industrial operations. Each project is supervised by a member of academic staff who you’ll meet with on a weekly basis. You’ll also attend a series of lectures and seminars dealing with relevant aspects of the planning, design and evaluation of the project, as well as ethical issues.

Each design group will assume the role of a group of engineers within a company. You’ll be tasked with making a recommendation to the company as to whether the proposed chemical plant is economically viable.

The design project is an exciting and vital part of your degree; a pass in this module is important for admission to chartered membership of the Institution of Chemical Engineers (IChemE) after graduation.

YEAR FOUR (MEng)
In your fourth year, you’ll carry out an individual research project under the guidance of an academic supervisor. The project will enable you to develop your research ability, a key skill needed in industry.

The topics of the projects provided vary greatly and are associated with current engineering problems in chemical and process engineering. Through the project, using experimental methods or computational simulation, you’ll gain an understanding in the area and develop the scientific understanding and engineering technology for the specific problem.

Recent research projects include:
- Extraction of silver from thiosulphate liquors
- Flocculation and aggregate structure of clay particulates
- Crystallisation of sodium sulphate
- Heat transfer in jacketed agitated reactors
- Applications of nanotechnology in enhanced oil recovery.

STUDENT SUPPORT
Throughout your studies, our personal tutorial system will provide you with academic and pastoral support through a designated personal tutor. You will have weekly academic tutorials with your tutor throughout your first year in your tutor group (of typically five students), as well as one-to-one meetings twice per semester.

In addition, our excellent Student Support team is based close to where you’ll work and study to help with anything from academic advice to timetabling and project submission enquiries.

The web-based student portal will enable you to access the University’s student services and information, while our virtual learning environment (VLE) will allow you access to your personal timetables, course materials, academic and social groups, and much more.
Careers and employability

A degree from the University of Leeds and the wider experience you’ll gain while you’re studying here will help you stand out from the crowd and secure that all-important graduate career in an increasingly competitive job market.

REWARDING CAREERS
87% of our recent graduates have successfully secured a professional or managerial role within six months of graduating (DHLE, 2015/16).

Recent graduates have gone on to further study or have successfully secured positions in chemical and pharmaceutical companies, fossil fuel and renewable energy plants, mineral processing and metals operations. They also work in areas such as the utilities, consulting, environmental, health and safety, various government agencies, banking and finance.

According to a salary survey undertaken by the Institution of Chemical Engineers (IChemE) in 2017, the average starting salary for a chemical engineer in the UK was in the region of £30,000.

STRONG INDUSTRIAL LINKS
We have close links with some of the top graduate recruiters in the industry, including Shell, Sellafield, AstraZeneca, Procter & Gamble, Unilever, GSK and Arup. Our links with the chemical, energy and petroleum industries mean that our courses are industry oriented, with up-to-date material relevant to your future career. Our graduates are consequently highly sought after by employers. We organise additional seminars delivered by practising engineers and other professionals, meaning that you have direct contact with industry and potential employers from the start.

CAREERS SUPPORT
Throughout your time with us, our award-winning Faculty Employability team is here to support, guide and advise you. In addition to specialist face-to-face meetings, you’ll benefit from:

- timetabled employability sessions
- ongoing support to find internships and placements
- presentations and workshops delivered by employers.

Our Employability team also organises an annual STEM Careers Fair, which will give you the opportunity to meet over 100 graduate recruiters to gain an insight into graduate jobs and to explore placement and internship opportunities.

INDUSTRIAL PLACEMENT YEAR
An industrial placement year is a great way to help you decide what kind of career you might like when you graduate. As well as giving you the opportunity to develop your own skills, you’ll gain a real insight into working life in a particular company or sector.

All our degrees allow you to undertake a placement year alongside your degree (either in the third year of the BEng or the third or fourth year of the MEng).

If you decide to undertake a placement year, this will extend your degree by 12 months. On successfully completing the year, you will be awarded the “industrial” variant in your degree title to demonstrate your unique expertise to future employers.

STUDY ABROAD
You have the opportunity to apply to spend time abroad, usually as an extra academic year. The University has partnerships with more than 400 universities worldwide and popular destinations for our students include Europe, the USA, Canada, Australia, New Zealand, Singapore, Hong Kong, South Africa and Latin America.

Visit our website to find out more about these and other opportunities.

engineering.leeds.ac.uk/chemical/employability
Our students can currently be found on placement at companies including:
- AstraZeneca
- Atkins
- BASF
- Mars
- GlaxoSmithKline
- Invista
- L’Oréal
- Rolls-Royce
- P&G
- Sellafield Ltd
- Total
- Unilever.

“I work closely with four main projects that involves working across a variety of areas in pharmaceutical development and innovation. So far, I have enjoyed the opportunity to get involved with a diverse range of projects across the company pipeline.”

HANNAH GEE
MEng Chemical Engineering (Industrial) Industrial placement year at Indivior
Chemical Engineering
(MEng, BEng)

Chemical engineering is all about changing raw materials by altering the chemical, biochemical or physical state of a substance to create everything from face creams to fuels, metals to paper, plastics to synthetic fibres and drugs. This course will expose you to the fundamental science and mathematics underpinning process engineering concepts, alongside specialised modules to equip you for a career in the chemical and related process industries.

In years one and two, you’ll cover topics such as mass and energy balances, thermodynamics, fluid mechanics, materials science and process modelling, as well as having plenty of opportunities to put that knowledge into practice in design and laboratory work.

In year three, you’ll build on this knowledge and study more specialised modules covering a wide range of chemical engineering topics such as separation processes, reaction engineering, particle process engineering and process control. You’ll also undertake a major design project.

If you continue into year four for the MEng qualification, you’ll carry out an individual research project that investigates an industry-related topic in depth. Masters-level modules informed by research interests across the School will allow you to develop sophisticated knowledge of topics such as product design and development, modelling and simulation, advances in chemical engineering and advanced reaction engineering.

If you wish to study a specialism as part of your degree, we offer the following alternatives:

- Chemical and Energy Engineering (MEng, BEng)
- Chemical and Materials Engineering (MEng, BEng)
- Chemical and Nuclear Engineering (MEng, BEng)

In these courses, the third and fourth years cover degree-related subjects and projects, as well as core chemical engineering topics. The first two years of all four courses are common, so you can transfer to one of the others at the end of the second year if you wish.

These courses are accredited by the Institution of Chemical Engineers (IChemE) so that you can eventually apply for Chartered Engineer (CEng) status. The MEng version meets all the educational requirements for registration as a UK chartered engineer (CEng). Graduates of the BEng schemes can achieve this with additional study.

RANKED A TOP 100 UNIVERSITY FOR
CHEMICAL ENGINEERING IN THE QS WORLD
UNIVERSITY RANKINGS BY SUBJECT 2018

REWARDING CAREERS
Careers in the field of chemical and process engineering are wide ranging and employment prospects are excellent.

Recent graduates have secured positions including:
- Drilling Engineer, BP
- Technologist, Essar Oil UK
- Process Engineer, Saudi Aramco
- Renewable Energy Asset Manager, EcoGen Services Limited
- Improvement Consultant, Tata Steel
- Materials Scientist, GSK
- Project Engineer, Schneider Electric
- Graduate Engineering Technician, ABB
- Nuclear Process Engineer, Amec
- Graduate Process Engineer, Babcock International
- Chemical Engineer, ExxonMobil
- Energetics Scientist, Qinetiq
- Nuclear Process Engineer, Sellafield Ltd
- Oil and Gas Production Technologist, Shell
- Process Project Engineering, Unilever.

engineering.leeds.ac.uk/chemical
The energy needs of the world’s population keep growing, with most of it coming from fossil fuels that generate carbon dioxide, which ultimately results in climate change. Fossil fuels need to be burnt more efficiently and cleanly while, at the same time, renewable and sustainable sources of energy must be developed. This course will equip you with the skills needed to work in the chemical, energy and related industries. You’ll learn about fundamental science and mathematical concepts such as process modelling, thermodynamics and materials science, but you’ll also gain specialised knowledge and skills in topics like combustion processes and renewable energy technologies.

Every stage of the course gives you plenty of opportunity to apply your knowledge to project-based work, equipping you with the professional skills to succeed in your future career.

As with the core Chemical Engineering course, in years one and two you will be exposed to the fundamental science underpinning a wide range of engineering principles.

In year three, you’ll take part in a group design project concentrating on the design of a materials processing plant, supported by modules that will help develop your specialist knowledge. You’ll learn about structural materials and functional and nanomaterials, as well as core topics like separation processes.

If you continue into year four for the MEng qualification, you’ll take Masters-level modules informed by the research interests of staff in the School. These will give you sophisticated knowledge of topics like materials selection and failure analysis, industrial polymer engineering and product design. You’ll also conduct an individual research project on a materials-related topic.

Throughout my three-year undergraduate degree, I have been exposed to the fundamental science and mathematics underpinning a wide range of process and energy engineering concepts through lectures, practicals and projects. Modules like Renewable Technologies, Combustion Theory and Health, Safety and Environment developed my interest and provided me with strong insight into chemical engineering, renewable systems and environmental sustainability.

The projects and practicals I have done so far put into my perspective the relevance of future energy systems and its fundamentals to encounter problems in global warming and energy shortage.

Support is always available from teaching staff who are there to answer your questions. There are also employability seminars that run throughout the entire year, various societies and a wide range of volunteering opportunities available.

The skills I have gained a wide range of through my course will aid me in my future career. These include communications skills, time management, teamwork health and safety awareness and software skills, including Aspen Hysys and Matlab.

MARYAM AL ABDULLATIF
MEng Chemical and Energy Engineering
Developing new processes for producing specialist materials, such as plastics, lightweight metal alloys and nanomaterials, is an emerging trend in the chemical industry for a wide variety of industrial and consumer applications. Covering all these areas, this degree is designed to provide you with the knowledge and skills for a career in the chemical, materials and related industries.

You’ll gain a good grounding in the fundamental science and mathematical concepts that underpin chemical engineering, such as thermodynamics and the principles of process engineering. Specialised modules will also give you a thorough understanding of materials-related topics like structural materials and nanomaterials.

Each year of the course gives you the chance to take part in project work, equipping you with the range of professional skills you’ll need in your future career.

As with the core Chemical Engineering course, in years one and two you will be exposed to the fundamental science underpinning a wide range of engineering principles.

In year three, you’ll take part in a group design project concentrating on the design of a materials processing plant, supported by modules that will help develop your specialist knowledge. You’ll learn about structural materials and nanomaterials, as well as core topics like separation processes.

If you continue into year four for the MEng qualification, you’ll take Masters-level modules informed by the research interests of staff in the School. These will give you sophisticated knowledge of topics like materials selection and failure analysis, industrial polymer engineering and product design. You’ll also conduct an individual research project on a materials-related topic.

REWARDING CAREERS
Our graduates have successfully secured positions as process engineers, drilling engineers, engineering technicians and chemical engineers, among many other roles. They work in chemical and pharmaceutical companies, fossil fuel and renewable energy plants, mineral processing and metals recycling operations. They also work in areas such as the utilities, consulting, environmental, health and safety, other government agencies and banking and finance.

“...I have completed a group project in which we were designing a plant for the production of glass. I learnt how to work well with people, come up with and share ideas, and the importance of good communication and presentation.

I want to finish my course with a PhD, after which I ideally would like to go back to my country and help improve the chemical engineering industry using the knowledge and experience I attain.”

OABONA KANGANGWANI
BEng Chemical and Materials Engineering
Chemical and Nuclear Engineering

(MEng, BEng)

Nuclear power is a major component of the energy supply mix of many industrialised nations. Concerns over climate change have prompted a major resurgence of interest in nuclear power in the UK and elsewhere, meaning that the current shortage of skilled engineers capable of designing, building, operating and decommissioning such facilities is likely to grow in the future.

To help meet this demand, this course will give you specialist knowledge in various aspects of nuclear energy, so that after graduation you can expect to pursue an exciting and highly rewarding career in the industry. You’ll also gain a broad knowledge of key topics across the field of chemical engineering, such as thermodynamics and materials science, to complement your specialist skills.

As with the core Chemical Engineering course, in years one and two you will be exposed to the fundamental science underpinning a wide range of engineering principles.

Year three gives you the opportunity to build on this foundation. You’ll develop a more advanced knowledge of key chemical engineering topics such as reaction engineering and separation processes, alongside a specialised module in nuclear science and engineering, covering the principles of fission though to reactor decommissioning and the treatment of nuclear waste.

If you continue to year four for the MEng qualification, you’ll take Masters-level modules informed by the research interests of staff in the School. You’ll develop skills in designing new chemical products and manufacturing challenges and study reaction engineering in greater depth. At the same time, you’ll deepen your understanding of the context of nuclear engineering and the directions it may take in the future.

REWARDING CAREERS

Recent graduates have successfully secured positions in top UK nuclear companies, which include chemical and pharmaceutical companies, fossil fuel and renewable energy plants, mineral processing and metals operations. Many of our graduates have developed their careers by undertaking PhD projects. They also work in areas such as the utilities, consulting, environmental, health and safety, other government agencies and banking and finance.

Recent graduates have secured positions including:

• Graduate Nuclear Process Engineer, AMEC
• Graduate Nuclear Process Engineer, National Nuclear Laboratory
• Graduate Trainee, Nucleargraduates
• Graduate Nuclear Process Engineer, Sellafield Ltd
• Systems Engineer, Sellafield Ltd
• Graduate Process Engineer, Babcock International.

“...The laboratory work we’ve done across the three years has been the most enjoyable part of my studies. It’s nice to have hands-on experience related to the concepts taught in lectures, and carrying out experiments and writing up the lab reports really helps to consolidate what you’ve been taught. Each year we’ve undertaken at least one chemical and nuclear-related project. This year, for the BEng design project, a small group of us designed part of a nuclear fuel reprocessing plant. It was a really challenging project as there were so many different things to consider but it was a chance to draw together all the basic concepts we had learned in the first two years of the course.”

CHARLOTTE RANSOM
MEng Chemical and Nuclear Engineering
These are typical modules/components studied and may change from time to time.

Modules

The first two years of our four chemical engineering degree courses are common, which means that is easy to change your course choice if you wish. For full module descriptions please visit our website.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory modules:</td>
<td>Optional modules:</td>
</tr>
<tr>
<td>• Technical Skills and Applications</td>
<td>• Mathematical Techniques 2</td>
</tr>
<tr>
<td>• Introduction to Process Engineering</td>
<td>• Engineering Science 2</td>
</tr>
<tr>
<td>• Engineering Science 1</td>
<td>• Safety, Health and Environment</td>
</tr>
<tr>
<td>• Mathematical Techniques 1</td>
<td>• Process Systems and Applications</td>
</tr>
<tr>
<td>• Materials Science and Engineering</td>
<td>• Process Modelling and Thermodynamics</td>
</tr>
<tr>
<td>Optional modules:</td>
<td>• Materials Synthesis and Characterisation</td>
</tr>
<tr>
<td>• Introduction to Petroleum Engineering</td>
<td></td>
</tr>
<tr>
<td>• Foundation Mathematics</td>
<td></td>
</tr>
<tr>
<td>• Fundamentals of Process Chemistry</td>
<td></td>
</tr>
<tr>
<td>• Foundation Engineering Physics</td>
<td></td>
</tr>
<tr>
<td>• Topics in Nanotechnology</td>
<td></td>
</tr>
<tr>
<td>• Introduction to Management</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Year 4 (MEng)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>• Design Project (BEng)</td>
<td>• Research Project (MEng)</td>
</tr>
<tr>
<td>• Process Engineering Operations</td>
<td>• Chemical Products Design and Development</td>
</tr>
<tr>
<td>• Separation Processes</td>
<td>• Multi-Scale Modelling and Simulation</td>
</tr>
<tr>
<td>• Reaction Engineering</td>
<td>• Advanced Reaction Engineering</td>
</tr>
<tr>
<td>• Process Optimisation and Control</td>
<td>• Fuel Processing</td>
</tr>
<tr>
<td>Chemical and Materials Engineering</td>
<td>Chemical and Energy Engineering</td>
</tr>
<tr>
<td>• Design Project (BEng)</td>
<td>• Research Project</td>
</tr>
<tr>
<td>• Separation Processes</td>
<td>• Chemical Product Design and Development</td>
</tr>
<tr>
<td>• Reaction Engineering</td>
<td>• Advanced Engines and Turbines</td>
</tr>
<tr>
<td>• Structural Materials</td>
<td>• Advanced Reaction Engineering</td>
</tr>
<tr>
<td>• Functional and Nano-Materials</td>
<td>• Fuel Processing</td>
</tr>
<tr>
<td>• Extractive Metallurgy</td>
<td>• Advanced Renewable Technologies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Year 4 (MEng)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical and Energy Engineering</td>
<td>Chemical and Nuclear Engineering</td>
</tr>
<tr>
<td>• Design Project (BEng)</td>
<td>• Research Project</td>
</tr>
<tr>
<td>• Separation Processes</td>
<td>• Chemical Products Design and Development</td>
</tr>
<tr>
<td>• Reaction Engineering</td>
<td>• Advanced Engines and Turbines</td>
</tr>
<tr>
<td>• Combustion Theory and Design</td>
<td>• Advanced Reaction Engineering</td>
</tr>
<tr>
<td>• Renewable Technologies</td>
<td>• Fuel Processing</td>
</tr>
<tr>
<td>Chemical and Nuclear Engineering</td>
<td>Chemical and Nuclear Engineering</td>
</tr>
<tr>
<td>• Design Project (BEng)</td>
<td>• Research Project</td>
</tr>
<tr>
<td>• Separation Processes</td>
<td>• Chemical Products Design and Development</td>
</tr>
<tr>
<td>• Reaction Engineering</td>
<td>• Advanced Engines and Turbines</td>
</tr>
<tr>
<td>• Nuclear Operations</td>
<td>• Advanced Reaction Engineering</td>
</tr>
<tr>
<td>• Nuclear Fundamentals</td>
<td>• Nuclear Engineering and the Nuclear Industry</td>
</tr>
<tr>
<td></td>
<td>• Nuclear Futures</td>
</tr>
</tbody>
</table>

engineering.leeds.ac.uk/chemical
Global economic growth creates rising demand for oil and gas. Petroleum engineers play a vital role in the industry by finding, extracting and processing oil and gas, but there is currently a major shortage of engineers qualified in this area.

Designed in collaboration with a number of companies, this degree will equip you to meet this need. You’ll study the basic mathematical, scientific and geological concepts that underpin petroleum engineering alongside specialised modules on topics like geophysics, drilling technology and unconventional oil and gas reservoirs.

The course is taught by the School of Chemical and Process Engineering, and the School of Earth and Environment, meaning you’ll be taught by experts in a variety of fields with extensive industrial experience.

The first two years of the course will give you a good grounding in the fundamental science and mathematics behind key engineering and geological concepts. You’ll learn the basics of geophysics, the mechanisms that create sedimentary basins and reservoir simulation techniques, as well as core topics like process modelling and thermodynamics.

Year three gives you the chance to build on this knowledge with a set of specialised modules on topics such as drilling and production technology and interpreting seismic activity. You’ll also explore wider strategic issues in the energy industries, such as climate change, environmental policy and the debate around shale gas extraction. The major team project will give you the chance to design an oil or gas reservoir or a production or processing facility.

If you continue to year four for the MEng qualification, you’ll study Masters-level modules informed by the research of staff in both Schools. The topics you’ll study include unconventional oil and gas reservoirs, refinery chemistry, and advanced drilling and production technology. You’ll also apply what you’ve learned to an individual research project on a topic relevant to the petroleum industry.

REWARDING CAREERS

Demand for hydrocarbon production is increasing as the global economy grows, and the oil and gas sector is truly international. As a result, you can look forward to a variety of exciting career prospects.

Recent graduate destinations include:
- Production Engineer, Saudi Aramco
- Field Engineer, Schlumberger
- Graduate Oil and Gas Production Technologist, Shell
- Well Performance Engineer, Total E&P
- Geologist, PTTEP
- Supply Chain Manager, Sahara Group

These are typical modules/components studied and may change from time to time.
Entry requirements and how to apply

<table>
<thead>
<tr>
<th>Degree title</th>
<th>UCAS code</th>
<th>Duration (years)</th>
<th>A-level</th>
<th>BTEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEng, BEng Chemical Engineering</td>
<td>H800</td>
<td>3/4</td>
<td>A*AA, including Mathematics and either Physics or Chemistry. Excludes General Studies and Critical Thinking.</td>
<td>DDD with distinctions in relevant mathematics and chemistry or physics units. Some mathematics and chemistry or physics units may be optional on your BTEC but are required by the Faculty. Please contact us for further information.</td>
</tr>
<tr>
<td>BEng Chemical Engineering</td>
<td>H805</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEng, BEng Chemical and Energy Engineering</td>
<td>H801</td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEng Chemical and Energy Engineering</td>
<td>H806</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEng, BEng Chemical and Materials Engineering</td>
<td>HJ85</td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEng Chemical and Materials Engineering</td>
<td>HJ90</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEng, BEng Chemical and Nuclear Engineering</td>
<td>H891</td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEng Chemical and Nuclear Engineering</td>
<td>H896</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEng, BEng Petroleum Engineering</td>
<td>H851</td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEng Petroleum Engineering</td>
<td>H856</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EQUIVALENT QUALIFICATIONS

We welcome students with a wide range of qualifications and these are listed on our website.

engineering.leeds.ac.uk/chemical/ug-equivalents

ENGLISH LANGUAGE REQUIREMENTS

GCSE English Language grade C/4 (or above) or an equivalent recognised English language qualification, eg IELTS 6.0 overall with no less than 5.5 in each section.

ACCESS TO LEEDS

The University of Leeds has a policy of welcoming applicants from non-traditional academic backgrounds. If you do not meet our entry criteria above, you may be eligible via the Access to Leeds scheme.

www.leeds.ac.uk/a2l

FOUNDATION COURSES

If you do not have the formal qualifications for immediate entry to one of our degrees, you may be able to progress through a foundation year.

The University offers a one-year BSc Studies in Science designed to prepare students without a science background at A-level for study on one of our degrees in engineering.
We also offer an interdisciplinary Science Foundation Year for applicants who meet specific widening participation criteria.

www.llc.leeds.ac.uk

INTERNATIONAL FOUNDATION YEAR IN ENGINEERING
Our International Foundation Year (IFY) is intended for international students who do not yet have the formal qualifications required for entry to level 1 of our degree courses.

internationalfoundationyear.leeds.ac.uk

LANGUAGE CENTRE
Our Language Centre provides the Academic English for Undergraduate Studies pre-sessional course, which is designed to help international students develop the necessary language and academic study skills for undergraduate study.

www.leeds.ac.uk/languages

ACADEMIC TECHNOLOGY APPROVAL SCHEME (ATAS)
If you are an international (non-EU/EEA or Swiss citizen) applicant who intends to study a four-year MEng, you will require an ATAS certificate.

gov.uk/academic-technology-approval-scheme

HOW TO APPLY
All undergraduate applications should be made through the Universities and Colleges Admissions Service (UCAS). Full instructions on how to apply are available at ucas.com

OFFER PROCESS
Suitable applicants will be invited to an applicant day, for which we strongly encourage attendance, as this gives you the opportunity to meet our students, academic and admissions staff, and find out more about your course. You’ll take part in a practical engineering activity, followed by a School and campus tour. The tour of the School’s facilities includes interactive demonstrations of student activities.

During the day you’ll have a discussion with an academic member of staff, to check that it’s the right course for you and your career plans, have your questions answered and find out more about studying at Leeds.

SCHOLARSHIPS
We offer a number of scholarships within the School. Visit our website for further details.

engineering.leeds.ac.uk/scholarships

CONTACT US
If you require any further information prior to making a formal application, please contact our Undergraduate Admissions team.

School of Chemical and Process Engineering
University of Leeds
Leeds LS2 9JT, UK
tel: +44 (0)113 343 6542
e-mail: ugchemical@leeds.ac.uk

FIND US ONLINE
To find out more about the University and the School of Chemical and Process Engineering visit:

engineering.leeds.ac.uk/chemical

facultyofengineeringleeds
@LeedsUniEng
@engineeringleeds
engineeringleeds
leedsuniengineering